Balancing out dwelling and moving: optimal sensorimotor synchronization.

نویسندگان

  • Ignasi Cos
  • Benoît Girard
  • Emmanuel Guigon
چکیده

Sensorimotor synchronization is a fundamental skill involved in the performance of many artistic activities (e.g., music, dance). After a century of research, the manner in which the nervous system produces synchronized movements remains poorly understood. Typical rhythmic movements involve a motion and a motionless phase (dwell). The dwell phase represents a sizable fraction of the rhythm period, and scales with it. The rationale for this organization remains unexplained and is the object of this study. Twelve participants, four drummers (D) and eight nondrummers (ND), performed tapping movements paced at 0.5-2.5 Hz by a metronome. The participants organized their tapping behavior into dwell and movement phases according to two strategies: 1) Eight participants (1 D, 7 ND) maintained an almost constant ratio of movement time (MT) and dwell time (DT) irrespective of the metronome period. 2) Four participants increased the proportion of DT as the period increased. The temporal variabilities of both the dwell and movement phases were consistent with Weber's law, i.e., their variability increased with their durations, and the longest phase always exhibited the smallest variability. We developed an optimal statistical model that formalized the distribution of time into dwell and movement intervals as a function of their temporal variability. The model accurately predicted the participants' dwell and movement durations irrespective of their strategy and musical skill, strongly suggesting that the distribution of DT and MT results from an optimization process, dependent on each participant's skill to predict time during rest and movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balancing out dwelling and moving : optimal sensorimotor 3 synchronization 4 5

24 Sensorimotor synchronization is a fundamental skill involved in the performance of many 25 artistic activities (e.g., music, dance). After a century of research, the manner in which the 26 nervous system produces synchronized movements remains poorly understood. Typical 27 rhythmic movements involve a motion and motionless phase (dwell). The dwell phase 28 represents a sizeable fraction of t...

متن کامل

Pareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm

Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...

متن کامل

Pareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm

The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...

متن کامل

Sensorimotor Synchronization with Different Metrical Levels of Point-Light Dance Movements

Rhythm perception and synchronization have been extensively investigated in the auditory domain, as they underlie means of human communication such as music and speech. Although recent studies suggest comparable mechanisms for synchronizing with periodically moving visual objects, the extent to which it applies to ecologically relevant information, such as the rhythm of complex biological motio...

متن کامل

Anti-Synchronization of Complex Chaotic T-System Via Optimal Adaptive Sliding-Mode and Its Application In Secure Communication

In this paper, an optimal adaptive sliding mode controller is proposed for anti-synchronization of two identical hyperchaotic systems. We use hyperchaotic complex T-system for master and slave systems with unknown parameters in the slave system. To construct the optimal adaptive sliding mode controller, first a simple sliding surface is designed. Then, the optimal adaptive sliding mode controll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 114 1  شماره 

صفحات  -

تاریخ انتشار 2015